The molecular features of a patient’s tumour impact clinical responses and can be used to guide therapy, leading to more effective treatments and reduced toxicity. Most
patients however do not benefit from such targeted therapies in part due to limited knowledge of candidate targets. Lack of efficacy is a leading cause of the 90% attrition rate in oncology
drug development, and fewer molecular entities to new targets are being developed. Unbiased strategies that effectively identify and prioritise oncology therapeutic targets are needed to improve success rates in drug development and to accelerate the development of new therapies.
We performed genome-scale CRISPR-Cas9 dependency screens in 324 human cancer cell lines from 30 cancer types and developed a data-driven framework to prioritise cancer therapeutic candidates. To distinguish genes required for cell fitness in specific molecular or histological contexts from core-fitness genes (which might be involved in cell essential processes exerting a greater toxicity when inactivated), we developed a novel statistical method: the Adaptive Daisy Model (ADaM). Through this method, we identified a novel set of human core-fitness genes which showed greater recall of genes involved in prior known essential processes and similar false discovery rates for putative context-specific fitness genes when compared with state-of-the-art reference sets of human essential genes. Subsequently, by focusing on putative context-specific fitness genes only, we systematically identified genomic biomarkers of gene essentiality and integrated these with target tractability information, through a dedicated bioinformatic pipeline designed on purpose. This allowed to nominate and prioritise promising therapeutic targets at a genome-scale, and generated a catalog of ~600 promising hits for specific tissues and genotypes, ranked according to their predicted future therapeutic potential, based on multiple evidences.
As a proof of concept, we further experimentally verified one of the most promising targets predicted by our approach - WRN (Werner syndrome ATP-dependent helicase) - as a selective and potent therapeutic target for cancers with microsatellite instability (MSI) from multiple tissues. Additionally, we validated this finding in vivo and determined, through a gene essentiality rescuing experiment, that the helicase activity of WRN is selectively required in MSI cancer cells and an important domain for future therapeutic targeting. Our analysis provides a comprehensive resource of cancer dependencies, generates a framework to prioritise oncology targets, and nominates specific new targets. The principles underlying this study and the described experimental/computational framework can inform the initial stages of drug development by contributing a new, diverse and more effective portfolio of oncology targets. Confirmatory studies are necessary to further evaluate the priority targets we have identified. Nonetheless, even a modest improvement in drug development success rates, and an expanded repertoire of targets, through approaches such as ours could bring patient benefit. Our CRISPR-Cas9 screening results are also a rich resource with diverse applications in fundamental and evolutionary biology, genome engineering and disease genetics. The datasets produced in this new study lay the foundations for producing the Cancer Dependency Map ( https://depmap.sanger.ac.uk/ ), a detailed rulebook for the precision treatment of cancer. All data and results are also public available and queryable in an interactive and user friendly way through the Project Score web-portal ( https://score.depmap.sanger.ac.uk/ ).